2024福建六市聯(lián)考1月高三數(shù)學試題及答案
高中數(shù)學秒殺技巧有哪些
1,適用條件:[直線過焦點],必有ecosA=(x-1)/(x+1),其中A為直線與焦點所在軸夾角,是銳角。x為分離比,必須大于1。注上述公式適合一切圓錐曲線。如果焦點內(nèi)分(指的是焦點在所截線段上),用該公式;如果外分(焦點在所截線段延長線上),右邊為(x+1)/(x-1),其他不變。
2,函數(shù)的周期性問題(記憶三個):1、若f(x)=-f(x+k),則T=2k;
2、若f(x)=m/(x+k)(m不為0),則T=2k;3、若f(x)=f(x+k)+f(x-k),則T=6k。注意點:a.周期函數(shù),周期必無限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
3,關于對稱問題(無數(shù)人搞不懂的問題)總結如下:1,若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對稱軸為x=(a+b)/2;2、函數(shù)y=f(a+x)與y=f(b-x)的圖像關于x=(b-a)/2對稱;3、若f(a+x)+f(a-x)=2b,則f(x)圖像關于(a,b)中心對稱
4,函數(shù)奇偶性1、對于屬于R上的奇函數(shù)有f(0)=0;2、對于含參函數(shù),奇函數(shù)沒有偶次方項,偶函數(shù)沒有奇次方項3,奇偶性作用不大,一般用于選擇填空
5,數(shù)列爆強定律:1,等差數(shù)列中:S奇=na中,例如S13=13a7(13和7為下角標);2等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比數(shù)列中,上述2中各項在公比不為負一時成等比,在q=-1時,未必成立4,等比數(shù)列爆強公式:S(n+m)=S(m)+q2mS(n)可以迅速求q
6,數(shù)列的終極利器,特征根方程。(如果看不懂就算了)。首先介紹公式:對于an+1=pan+q(n+1為下角標,n為下角標),a1已知,那么特征根x=q/(1-p),則數(shù)列通項公式為an=(a1-x)p2(n-1)+x,這是一階特征根方程的運用。二階有點麻煩,且不常用。所以不贅述。希望同學們牢記上述公式。當然這種類型的數(shù)列可以構造(兩邊同時加數(shù))
高中數(shù)學解析秒殺公式秘訣
1、《集合與函數(shù)》秒殺公式秘訣
內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。
復合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。
指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù)
正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。
兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸
求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。
2、《三角函數(shù)》秒殺公式秘訣
三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割
中心記上數(shù)字1,連結頂點三角形;向下三角平方和,倒數(shù)關系是對角,
頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,
變成稅角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,
將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數(shù)名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用
1加余弦想余弦,1 減余弦想正弦,冪升一次角減半,升冪降次它為范
三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集
3、《不等式》秒殺公式秘訣
解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。
高次向著低次代,步步轉化要等價。數(shù)形之間互轉化,幫助解答作用大。
證不等式的方法,實數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。非負常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學歸納法。圖形函數(shù)來幫助,畫圖建模構造法。
4、《數(shù)列》秒殺公式秘訣
等差等比兩數(shù)列,通項公式N項和。兩個有限求極限,四則運算順序換。
數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯位相消巧轉換,
取長補短高斯法,裂項求和公式算。歸納思想非常好,編個程序好思考:
一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學歸納法,證明步驟程序化:
首先驗證再假定,從 K向著K加1,推論過程須詳盡,歸納原理來肯定。
5、《復數(shù)》秒殺公式秘訣
虛數(shù)單位i一出,數(shù)集擴大到復數(shù)。一個復數(shù)一對數(shù),橫縱坐標實虛部。
對應復平面上點,原點與它連成箭。箭桿與X軸正向,所成便是輻角度。
箭桿的長即是模,常將數(shù)形來結合。代數(shù)幾何三角式,相互轉化試一試。
代數(shù)運算的實質(zhì),有i多項式運算。i的正整數(shù)次慕,四個數(shù)值周期現(xiàn)。
一些重要的結論,熟記巧用得結果。虛實互化本領大,復數(shù)相等來轉化。
利用方程思想解,注意整體代換術。幾何運算圖上看,加法平行四邊形,
減法三角法則判;乘法除法的運算,逆向順向做旋轉,伸縮全年模長短。
三角形式的運算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便。
輻角運算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛,
兩個不會為實數(shù),比較大小要不得。復數(shù)實數(shù)很密切,須注意本質(zhì)區(qū)別。