2023年全國乙卷高考數(shù)學(理科)試題
2023年全國乙卷高考數(shù)學(理科)答案
高中數(shù)學有什么必背知識
1、函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(—x);
(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2、復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調(diào)性由“同增異減”判定;
3、函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數(shù)y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;
4、函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符號由口訣“同正異負”記憶;
(4)a log a N= N(a>0,a≠1,N>0);
高中數(shù)學的學習方法
1.高中數(shù)學學習方法—聽好課在課堂上集中注意力是想要學好一門科目的關鍵,高中數(shù)學課也不例外。數(shù)學也是一門極難學懂的課程,所以學生在課上課下都要花費大量的時間,數(shù)學也不是一門只要掌握好方法就能學懂的學科,所以在高中數(shù)學的學習上,一定要好好聽課,汲取老師的經(jīng)驗,轉(zhuǎn)化為自己知識,才能把握住一些技巧性的東西,從而提高自己數(shù)學的分數(shù)。
2.高中數(shù)學學習方法—勤做題相信很多學生在高三的時候都經(jīng)歷了瘋狂做題的階段,每天幾套幾套的卷子,做的學生心理疲憊。但是題海戰(zhàn)術面對我國現(xiàn)在高中生的普遍水平還是很管用的。如果你不像其他學霸那樣有著過人的天分,那么在高中數(shù)學的學習上,就一定要多做題、勤做題。把每個你不會的題型都多做幾遍,做的多了,數(shù)學的水平自然也就上去了。
高考數(shù)學學習方法
1、轉(zhuǎn)變?yōu)橥瓿扇蝿斩鲱}的思想,把精力用于自主研究上,可以多看例題,遇到不懂的地方,就順藤摸瓜,挖掘出問題的根源。一遍不行兩邊兩邊不行三遍。
2、能動手的就操作一下,因為人類知識的形成直觀經(jīng)驗最重要,別人說的不如自己試試印象深刻。然后做一個明了的總結(jié)。
3、對于幾何問題,重要的是關注性質(zhì)定理是怎么得來的,像上面說的該動手的最好試試,對一些關鍵詞弄懂意思。將有異同點的問題摘記在一起做好比較,找出它們的差別。
4、對代數(shù)問題,除了上面3說的外,采用數(shù)形結(jié)合的方法,目的還是為了直觀好理解。特別是函數(shù)問題,不等式,方程。